
introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

In code we trust:
Fighting targeted backdoors

with secure multiparty code reviews
and a single source of truth

Frank Braun

@thefrankbraun

2018-10-06

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun
https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

1 introduction

2 targeted backdoors

3 recent developments

4 current mitigations

5 implementation in Codechain

6 SSOT

7 conclusion

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

who am I?

cryptoanarchist

software developer

⇒ but: I became somewhat disillusioned with mainstream tech...

talk last year on ”Dehumanizing Technology”:

IMHO current trajectory leads to technological totalitarianism

what do?

political reform (→ good luck!)

abolish (”bombing us back into the stone age”1)

transform (grow faster on a different technology trajectory)

⇒ cryptoanarchistic software engineering (freedom technology)
1Ted Kaczynski, Anti-Tech Revolution: Why and How (2016)

in code we trust| @thefrankbraun | 2018-10-06

https://archive.org/details/KaczynskiAntiTechRevolutionWhyAndHow_201803
https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Reflections on Trusting Trust

“To what extend should one trust a statement that a
program is free of Trojan horses? Perhaps it is more
important to trust the people who wrote the software.”
— Ken Thompson, Turing Award Lecture, 1984

questions:

how can we trust the people who wrote the software?

how can we make sure we actually run the code they wrote?

⇒ this talk is not about making sure the code you execute is right,
but making sure you execute the right code!

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

what happens if you execute the wrong code?

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

the problem of targeted backdoors

The Fog of Cryptowar2 warned:

“that the picture painted in [the] media as well as by
experts and pro-crypto activists, may be misleading and
creates the potential to engage a straw man put up by
the executive branches in various countries. This
response risks that pro-crypto forces miss the big picture
of regulation in the communications sphere.”

⇒ crypto regulation not black-and-white, not about outlawing

2http://shadowlife.cc/files/hcpp17-smuggler.html

in code we trust| @thefrankbraun | 2018-10-06

http://shadowlife.cc/files/hcpp17-smuggler.html
https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

realistic and likely regulatory approaches

1 defense of metadata access

2 nudge vendors to deliver software with less secure defaults

3 lawful hacking

4 use of update mechanisms to deliver police Trojans

5 mandate plaintext access

focus on technical mitigations to issue 4, the use of targeted
updates to introduce backdoors into specific devices to surveil
the user (so-called targeted backdoors)

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

relevant suggestions

1 Secure software distribution: Automatically verify with of
single source of truth (SSOT) that a program is the same on
all devices.

2 Secure software development: Better review and auditing for
security critical code. Enforce that code changes always
require at least two signatures.

3 Verifiable build processes: Review and audits are of little use,
if the build process (the compilation) cannot be verified.

4 More decentralized platform vendors: Today very few platform
providers control the OS and the app delivery channels.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

relevant suggestions

1 Secure software distribution: Automatically verify with of
single source of truth (SSOT) that a program is the same on
all devices.

2 Secure software development: Better review and auditing for
security critical code. Enforce that code changes always
require at least two signatures.

3 Verifiable build processes: Review and audits are of little use,
if the build process (the compilation) cannot be verified.

4 More decentralized platform vendors: Today very few platform
providers control the OS and the app delivery channels.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

relevant suggestions

1 Secure software distribution: Automatically verify with of
single source of truth (SSOT) that a program is the same on
all devices.

2 Secure software development: Better review and auditing for
security critical code. Enforce that code changes always
require at least two signatures.

3 Verifiable build processes: Review and audits are of little use,
if the build process (the compilation) cannot be verified.

4 More decentralized platform vendors: Today very few platform
providers control the OS and the app delivery channels.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

recent developments regarding targeted updates

Unfortunately, that’s exactly the approach the Australian
government, a member of the Five Eyes, is taking in their proposed
Assistance and Access Bill 2018:

“[Technical Capability] Notices may still require a
provider to enable access to a particular service, particular
device or particular item of software, which would not
systematically weaken these products across the market.”

This approach won’t be unique to Australia, they are just
spearheading the approach for the Five Eye nations, and others are
likely to follow.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Assistance and Access Bill 2018

“Likewise, a notice may require a provider to facilitate
access to information prior to or after an encryption
method is employed, as this does not weaken the
encryption itself.”

⇒ targeted updates are the available technical methods which
allow to give governments these targeted backdoors!

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

secure APT (Debian) packages
that’s the model employed by apt in Debian and related distros

“By adding a key to apt’s keyring, you’re telling apt to
trust everything signed by the key, and this lets you know
for sure that apt won’t install anything not signed by the
person who possesses the private
key.”—https: // wiki. debian. org/ SecureApt

reverse conclusion:
apt trusts everything signed by the person’s private key

dpkg has support for verifying GPG signatures of Debian
package files, but this verification is disabled by default

only repository metadata is verified!

Debian & Ubuntu: GPG keys are up to 6 years old

in code we trust| @thefrankbraun | 2018-10-06

https://wiki.debian.org/SecureApt
https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

problem with APT’s approach

Developer signatures do not matter, only repository sigs.

Repo sigs created by single GPG key, often quite old, and kept
on networked server:

There is a single point of failure (just one key).
If keys are kept on a networked server they are easier to steal.
The long validity times make stolen keys more disastrous.
If the signing of packages is automatic then it is likely that
there is little checking of package content happening.

No method for key rotation, to rotate keys packages are signed
with ”overlapping” keys ⇒ hard to rotate in emergency.

It seems that packages have to be signed only by one trusted
key in order to be accepted by an ‘apt‘ client. That is, no
pinned mapping between repositories and GPG keys?

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Git version control system

data integrity via Git’s data structure (Merkle trees)

Git allows to sign tags and commits with GPG

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Git: signing & verifying tags

$ git tag -s v1.5 -m ’my signed 1.5 tag’

$ git tag -v v1.5

problem:

tags are not unmodifiable

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Git: signing & verifying commits

$ git commit -a -S -m ’signed commit’

$ git merge --verify-signatures signed-branch

only merging “fast-forwarding“ branches gives some protection
against regression (given one knows the HEAD)

problem:

every commit needs to be signed

user has to trust all developer keys

⇒ hard to deploy in practice

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

summary of possible attacks

The current solutions to sign software do not protect against:

key compromise

developer coercion (wrench attack), blackmailing, or bribing

regression (suppressing of updates)

A developer being forced to give up his signing key or a stolen
repository signing key would be disastrous.

GPG has no automatic mechanism for key rotation, likely reason
why many GPG keys are quite old.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

proposed solution

design for secure software distribution and development which
mitigates these attacks:

1 Establishing code trust via multi-party code reviews recorded
in unmodifiable hash chains. This prevents that a single
developer can include a generic backdoor into software.

2 A single source of truth (SSOT) mechanism which makes sure
every user of the software gets the same version of the
software. This prevents targeted backdoors and the
suppression of security updates.

Together this builds a secure software delivery and update
mechanism which cannot be compromised by a single developer or
for a specific user, thereby preventing targeted backdoors.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Codechain design

(joined work with Jonathan ”Smuggler” Logan)

the “unit” of code are directory trees

the hash of a directory tree is a tree hash

the code history is a sequence of unique tree hashes, starting
from the hash of the empty tree

the sequence of tree hashes and their signatures are recorded
in a hash chain file

the signatures contributes towards a m-of-n threshold

code is distributed as a set of patch files which transform a
directory tree a into a directory tree b

patch files are named after the outgoing tree hash a

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

tree hashes

$ cd $GOPATH/ s r c / g i t hub . com/ f r ankb r aun / codecha in /doc/ h e l l o p r o j e c t

$ codecha in t r e e h a s h − l
f ab81f3080f71a034c90dc0ca64b62295d3a75a23ec1b0f498dfda4a34325ae3a README.md
f ad125cc5c1fb680be130908a0838ca2235db04285bcdd29e8e25087927e7dd0d h e l l o . go

$ codecha in t r e e h a s h
d844cbe6f6c2c29e97742b272096407e4d92e6ac7f167216b321c7aa55629716

$ codecha in t r e e h a s h − l | sha256sum
d844cbe6f6c2c29e97742b272096407e4d92e6ac7f167216b321c7aa55629716

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

patch files

codecha in p a t c h f i l e v e r s i o n 1
t r e e h a s h e3b0c44298fc1c149afb f4c8996fb92427ae41e4649b934ca495991b7852b855
+ f ab81f3080f71a034c90dc0ca64b62295d3a75a23ec1b0f498dfda4a34325ae3a README.md
dmppatch 2
@@ −0,0 +1 ,45 @@
+## Example p r o j e c t f o r Codecha in wa lk th rough%0A
+ f ad125cc5c1fb680be130908a0838ca2235db04285bcdd29e8e25087927e7dd0d h e l l o . go
dmppatch 2
@@ −0,0 +1 ,78 @@
+package main%0A%0Aimport (%0A%09%22fmt%22%0A)%0A%0Afunc main ()
%7B%0A%09fmt . P r i n t l n (%22 h e l l o wor ld !%22)%0A%7D%0A
t r e e h a s h d844cbe6f6c2c29e97742b272096407e4d92e6ac7f167216b321c7aa55629716

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

hash chain format
a hash chain is stored in a simple newline separated text file
each hash chain entry corresponds to a single line of the form:

hash−of−p r e v i o u s c u r r e n t−t ime t y p e type− f i e l d s . . .

where:

hash-of-previous is the SHA256 hash of the previous line
(without newline)
the fields are separated by single white spaces
the current-time is encoded as an ISO 8601 string in UTC
all hashes in a hash chain are SHA256 hashes encoded in hex
notation
hex encodings have to be lowercase
all public keys are Ed25519 keys and they and their signatures
are encoded in base64 (URL encoding without padding)
comments are arbitrary UTF-8 sequences (without newlines)

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

hash chain types

there are six different types of hash chain entries:

c s t a r t
s o u r c e
s i g n t r
addkey
remkey
s i g c t l

a hash chain must start with a cstart entry

that is the only line where this type must appear

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

type cstart

A cstart entry starts a new hash chain.

hash−of−prev cur−t ime c s t a r t pubkey nonce s i g n a t u r e [comment]

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

type source

Marks a new source tree state for publication (from developer).

hash−of−prev cur−t ime sou r c e source−hash pubkey s i g [comment]

Signature is over the source-hash and the optional comment.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

type signtr

Signs a previous entry and approves all code changes and changes
to the set of signature keys and m up to that point.

hash−of−prev cur−t ime s i g n t r hash−of−cha in−e n t r y pubkey s i g

It does not have to sign the previous line (→ detached signatures).

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

type addkey

Marks a pubkey for addition to the list of approved signature keys.

hash−of−prev cur−t ime addkey w pubkey s i g [comment]

The weight (towards m) is denoted by w.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

type remkey

A remkey entry marks a signature pubkey for removal.

hash−of−prev cur−t ime remkey pubkey

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

type sigctl

Denotes an update of m, the minimum number of necessary
signatures to approve state changes (the threshold).

hash−of−prev cur−t ime s i g c t l m

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

distributing the current head

The current head of a hash chain is all one need to fully verify
the entire code history and recreate the most current code
version with enough signatures, given that one has access to
the hash chain and the corresponding patch files.

But in order to prevent the suppression of updates to certain
users, a form of targeted updates, one has to ensure that all
users have access to the most current head.

⇒ Employ a so-called single source of truth (SSOT) where every
user has access to the same authentic version of a data object.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Single source of truth (SSOT) via DNS

use widely deployed SSOT system DNS

store a signed head in TXT record of fully qualified domain
name

the head is signed, allows clients updates to it (trust on first
use)

due to distributed caching of DNS it is not possible for
publishers to send different signed heads to different users (no
targeted updates by publishers)

distributing false signed heads through DNS spoofing is
prevented iff client has seen signed head before (clients cache)

if valid head not seen before, vulnerable to DNS spoofing

can be mitigated by deploying the SSOT on a domain with
DNSSEC

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Signed head specification

PUBKEY (32-byte), Ed25519 public key of SSOT head signer

PUBKEY ROTATE (32-byte), pubkey to rotate to (0 if unused)

VALID FROM (8-byte), signed head valid from given Unix time

VALID TO (8-byte), signed head is valid to the given Unix time

COUNTER (8-byte), strictly increasing signature counter

HEAD, the Codechain head to sign

SIGNATURE, signature with PUBKEY

concatenate (integers in big-endian) and encode as base64

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Secure package (.secpkg) specification

{
”Name ” : ” th e p r o j e c t ’ s package name ” ,
”Head ” : ” head o f p r o j e c t ’ s Codecha in ” ,
”DNS” : ” f u l l y q u a l i f i e d domain name ” ,
”URL ” : ”URL to download p r o j e c t f i l e s o f t he from ”

}

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Example ‘.secpkg‘ file for Codechain itself

{
”Name ” : ” c o d e c h a i n ” ,
”Head ” : ”73 fe1313fd924854f149021e969546bce6052eca0c22b2b91245cb448410493c ” ,
”DNS” : ” c o d e c h a i n . secpkg . ne t ” ,
”URL ” : ” h t t p : / / f r a n k b r a u n . org / c o d e c h a i n ”

}

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

CreatePkg & SignHead

CreatePkg: Publish HEAD & distribution HEAD.tar.gz for the
first time

SignHead: Sign current HEAD regularly and update package
if necessary

Signing should happen regularly (timeouts), even if the HEAD
didn’t change.

The administrator has to upload the distribution HEAD.tar.gz to
the download URL and publishes the new DNS TXT record in the
defined zone. DNSSEC should be enabled.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Install & Update

$ d i g −t TXT code cha i n . codecha in . secpkg . net
[. . .]
c od e cha i n . codecha in . secpkg . net . 903 IN TXT ”49 tm45BwAdDitsidwlFWXsTOd−PZ71eyskggnXu

ECAABbs−byAAAAAFvbc IAAAAAAAAAAFPywm2
S4XMwboPVTjED7y4L2HpWExW8S0nh7mx437WDpovEmnX4EpoOHasaPYxTIjIY6x34ygspeLGkvvfVrz6y3U
vfE−QAN61dXzrBjYlx2LNd7xXRGjHopi0Am82kBA”
[. . .]

Install: install software described by a .secpkg file for the first
time.

Update: Query for updates and perform them, if necessary.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Installing the Codechain package

$ secpkg i n s t a l l codecha in . secpkg
. secpkg : w r i t t e n
s i g n ed head found : 53 f2c26d92e173306e83d54e3103ef2e0bd87a561315bc4b49e1ee6c78dfb583
/home/ f r a n k / . c o n f i g / secpkg / pkgs / codecha in / s i g n ed head : w r i t t e n
download
ht tp : // f r ankb r aun . org / codecha in /53 f2c26d92e173306e83d54e3103ef2e0bd87a561315bc4b49e1ee6c78dfb583 . t a r . gz
env GO111MODULE=on go b u i l d −mod vendor −v . / . . .
env GO111MODULE=on GOBIN=/home/ f r a nk / . c o n f i g / secpkg / l o c a l / b in go i n s t a l l \
−mod vendor −v . / . . .

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

three Codechain tools for different user roles

1 codechain for developers to record code changes and
corresponding multi-party reviews in a unmodifiable hash
chain.

2 ssotpub for admins to publish the head of a hash chain
created by codechain with a SSOT using DNS TXT records,
creating a .secpkg file in the process.

3 secpkg for users to securely install and update software
distributed as .secpkg files.

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

Codechain

Codechain beta is available now

→ https://github.com/frankbraun/codechain

minimal code base, Go only, cross-platform (tested on Linux)

≈7000 lines of code (plus vendored dependencies)

public domain (http://unlicense.org/)

Codechain depends on the git binary (for git diff), but
that’s optional

Codechain is reviewed and signed with Codechain (2-of-3)

current head of Codechain’s hash chain:
c63c7648696b9017a13b101f917254f9876dcc09d98ee9d1bb83a1e43bdd05b9

in code we trust| @thefrankbraun | 2018-10-06

https://github.com/frankbraun/codechain
http://unlicense.org/
https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

conclusion

While it is good that code signing is widely deployed now it
doesn’t solve important attack vectors.

Codechain mitigates:

key compromise (with multiparty signatures & key rotation)

developer coercion (with multiparty signatures & key rotation)

mitigates regression / suppression of updates (with SSOT)

This gives us

globally identical,

verifiable,

reproducible, and

attributable

binaries build from source, which mitigates targeted updates

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun

introduction targeted backdoors recent developments current mitigations Codechain SSOT conclusion

acknowledgments: Jonathan ”Smuggler” Logan
contacts:

Email: frank@cryptogroup.net (use PGP, key on keyserver)

94CC ADA6 E814 FFD5 89D0 48D7 35AF 2AC2 CEC0 0E94

Twitter: @thefrankbraun

slides: http://frankbraun.org/in-code-we-trust-2.pdf

see also essay under http://frankbraun.org/essay/ (25 pages)
thank you very much for your attention! questions?

in code we trust| @thefrankbraun | 2018-10-06

https://twitter.com/thefrankbraun
http://frankbraun.org/in-code-we-trust-2.pdf
http://frankbraun.org/essay/
https://twitter.com/thefrankbraun

	introduction
	targeted backdoors
	recent developments
	current mitigations
	implementation in Codechain
	SSOT
	conclusion

