
Fighting targeted backdoors with secure
multiparty code reviews and a SSOT

Frank Braun

2018-10-06

Contents
Reflections on trusting trust . 1
The problem of targeted backdoors . 2
Recent developments regarding targeted backdoors 4
Current mitigation attempts . 6

Signing software with secure APT (Debian) packages 6
Signing software with signify in OpenBSD 10
Signing software with the Git version control system 10
Summary of possible attacks . 11

A proposed solution . 11
Code trust via multi-party code reviews recorded in hash chains 11
Tree hash specification . 12
Hash chain file format . 12
Patchfile format . 14
Distributing the current head . 17
Single source of truth (SSOT) via DNS 17
Secure package (.secpkg) specification 20

Implementation in Codechain . 22
Codechain goals . 23

Conclusion . 24
Acknowledgments . 25

Reflections on trusting trust

“To what extend should one trust a statement that a program is free
of Trojan horses? Perhaps it is more important to trust the people
who wrote the software.”

(Ken Thompson, Turing Award Lecture1, 1984)
1https://doi.org/10.1145/358198.358210

1

https://doi.org/10.1145/358198.358210

This famous statement leads to the following questions:

• How can we trust the people who wrote the software?
• How can we make sure we actually run the code they wrote?

The problem of targeted backdoors

The Fog of Cryptowar2 warns “that the picture painted in [the] media as well as
by experts and pro-crypto activists, may be misleading and creates the potential
to engage a straw man put up by the executive branches in various countries.
This response risks that pro-crypto forces miss the big picture of regulation in
the communications sphere.”

Crypto regulation is not black-and-white, the core of the debate is not actually
about outlawing crypto.

But often pro-crypto groups focus on such black-and-white scenarios with bad
counterarguments like “banning cryptography is like banning math” which misses
the point.

Increasing regulations in the cryptocurrency space are a good example for the
practical implications of regulations: Although the crypto itself isn’t outlawed,
more and more KYC and AML regulations have huge effects on the practi-
cal usability of cryptocurrencies, especially for use cases where at least one
of the transaction participants needs financial privacy. What’s the use of a
cryptocurrency if you cannot easily buy or sell it?

Todays widespread use of cryptography to encrypt personal communication and
data leads to the situation that the confiscation of computers and smartphones
no longer guarantees access to evidence that would stand up in court:

“It is in light of cryptography providing effective limits to court
orders and warrants, and the history of previous regulation to make
law enforcement effective, that now regulation on cryptography is
demanded.

The main question remaining is if and how cryptography can be
regulated without causing too much collateral damage to the societal
uses of cryptography.

[. . .]

The goal is not, and cannot be, to snatch strong cryptography from
the hands of people. Instead, the current debate is about making
the secrets that cryptography protects accessible to law enforcement.
This is no minute point since it deeply shapes the approach that
regulators take, and it is therefor the point with which pro-crypto
activists must engage. Failing to see that the goal is access to the

2http://shadowlife.cc/files/hcpp17-smuggler.html

2

http://shadowlife.cc/files/hcpp17-smuggler.html

plaintext confines arguments into a space that is neither relevant nor
commonly understandable for public opinion. While it is certainly
difficult to appreciate this difference from the perspective of cryp-
tography it is nevertheless substantial—because it allows for very
different technical implementations and legislative action."

(from The Fog of Cryptowar3, section “Motives for regulating cryptography”)

The article then goes on to argue that following five regulatory approaches are
both realistic and likely:

1. Defense of metadata access.

2. Nudge vendors to deliver software with less secure default settings.

3. Lawful hacking.

4. Use of update mechanisms to deliver police Trojans.

5. Mandate plaintext access.

In this paper we focus on technical mitigations to issue 4, the use of targeted
updates to introduce backdoors into specific devices in order to surveil the user
(so-called targeted backdoors).

The relevant suggestions in this regard were:

1. Secure software distribution: Automatically verify with some form of
single source of truth (SSOT) that a program delivered to a devices is the
same as the installation on all other devices.

2. Secure software development: Better review and auditing processes
for security critical code. Most importantly, enforce that code changes
always require the cryptographic signatures of at least two developers.

3. Verifiable build processes: Review and audits are of little use, if the
build process (the compilation) cannot be verified. This means that
verifiable, deterministic builds should become commonplace.

4. More decentralized platform vendors: Today most users depend on
very few platform providers that control both the operating system and
the application delivery channels, which allows regulators to capture wide
sections of the market by focussing all attention on a handful of corporations
in a few jurisdictions.

The technical mitigations to targeted updates discussed in this article concern
suggestions 1 to 3. Suggestion 4 is more non-technical in nature and is discussed
in the conclusion at the end.

3http://shadowlife.cc/files/hcpp17-smuggler.html

3

http://shadowlife.cc/files/hcpp17-smuggler.html

Recent developments regarding targeted backdoors

Unfortunately, targeted updates is exactly the approach the Australian govern-
ment, a member of the Five Eyes, is taking in their proposed Assistance and
Access Bill 2018:

“[Technical Capability] Notices may still require a provider to enable
access to a particular service, particular device or particular item
of software, which would not systemically weaken these products
across the market. For example, if an agency were undertaking an
investigation into an act of terrorism and a provider was capa-
ble of removing encryption from the device of a terrorism
suspect without weakening other devices in the market then
the provider could be compelled under a technical assistance notice
to provide help to the agency by removing the electronic protection.

The mere fact that a capability to selectively assist agencies with
access to a target device exists will not necessarily mean that a
systemic weakness has been built. The nature and scope of any
weaknesses and vulnerabilities will turn on the circumstances in
question and the degree to which malicious actors are able to exploit
the changes required.

Likewise, a notice may require a provider to facilitate access to
information prior to or after an encryption method is em-
ployed, as this does not weaken the encryption itself. A requirement
to disclose an existing vulnerability is also not prohibited."

(from the Assistance and Access Bill 2018, Explanatory Document4, August
2018, page 47, highlighting added)

If one looks behind the general formulations used in the explanatory document, it
becomes clear that targeted updates are the concrete technical methods available
today [“provider was capable”] which allows service providers to give governments
these targeted backdoors.

These targeted updates would either work on the application level or the operating
system level:

• A targeted update to a secure messaging application could introduce a
backdoor for specific application and user combination, effectively “remov-
ing encryption from the device of a terrorism suspect without weakening
other devices in the market”.

• Likewise, a targeted update to an operating system could introduce a
backdoor to this specific operating system and user combination and
thereby “facilitate access to information prior to or after an encryption
method is employed”.

4http://frankbraun.org/ref/assistance-and-access-bill-2018-explanatory-document.pdf

4

http://frankbraun.org/ref/assistance-and-access-bill-2018-explanatory-document.pdf

The motivation the Department of Home Affairs of the Australian Government
gives for the Assistance and Access Bill 2018 is quite instructive:

“Encryption conceals the content of communications and data held
on devices, as well as the identity of users. Secure, encrypted com-
munications are increasingly being used by terrorist groups and
organised criminals to avoid detection and disruption. The problem
is widespread, for example:

• Encryption impacts at least nine out of every ten of ASIO’s
[Australian Security Intelligence Organisation] priority cases.

• Over 90 per cent of data being lawfully intercepd by the AFP
[Australian Federal Police] now use some form of encryption.

• Effectively all communications among terrorists and organised
crime groups are expected to be encrypted by 2020.

State and Territory law enforcement are facing significant challenges
as well. The following example from Victoria Police demonstrates:

A high risk Registered Sex Offender (RSO) was placed on the register
for raping a 16 year old female, served nine years imprisonment and
is now monitored by Corrections via two ankle bracelets whilst out
on parole. Victoria Police received intelligence that he was breaching
his RSO and parole conditions by contacting a number of females
typically between 13 and 17 years of age. Enquiries showed that
he was contacting these females and offering them drugs in return
for sexual favours. The suspect was arrested and his mobile phone
was seized but despite legislative requirements he refused to provide
his passcode. Due to an inability to access his phone as well as the
fact that he used encrypted communication methods such as
Snapchat and Facebook Messenger [sic], Victoria Police was
unable to access evidence which would have enabled them to secure
a successful prosecution and identify further victims and offences.
These are high victim impact crimes that are being hindered by the
inability of law enforcement to access encrypted communications.

Obstacles to the lawful access of communications significantly impacts
the ability of law enforcement and security agencies to enforce the
law, investigate serious crimes and protect the public. The measures
in the Assistance and Access Bill will help our agencies overcome
these challenges."

(from The Assistance and Access Bill 2018 website5, accessed on 2018-10-04)

This approach to targeted backdoors won’t be unique to Australia, they are just
spearheading the approach for the Five Eye nations, and others are likely to
follow.

5https://www.homeaffairs.gov.au/about/consultations/assistance-and-access-bill-2018

5

https://www.homeaffairs.gov.au/about/consultations/assistance-and-access-bill-2018

This document describes an approach to fight targeted backdoors with secure
multiparty code reviews and a single source of truth (SSOT). This approach
would render service providers incapable to comply with requests as described
above, because it would ensure in an uncircumventable way that all users always
get the same software update.

Current mitigation attempts

We now describe some of the currently deployed software signing methods.

Signing software with secure APT (Debian) packages

This is the model employed by apt in Debian and related distributions:

“By adding a key to apt’s keyring, you’re telling apt to trust every-
thing signed by the key, and this lets you know for sure that apt
won’t install anything not signed by the person who possesses the
private key.”

(from SecureApt6)

This leads to the reverse conclusion, that apt trusts everything signed by the
person’s private key.

dpkg has support for verifying GPG signatures of Debian package files, but this
verification is disabled by default, only repository metadata is verified:

GPG can be used to create a digital signature for both Debian
package files and for APT repository metadata.

Many Debian-based Linux distributions (e.g., Ubuntu) have GPG
signature verification of Debian package files (.deb) disabled by
default and instead choose to verify GPG signatures of repository
metadata and source packages (.dsc). The setting which enables
GPG signature checking of the individual .deb packages can be
found in /etc/dpkg/dpkg.cfg and is set to no-debsig, but there
are important caveats to enabling this option explained below.

Further, most official Debian package files from the publicly accessible
repositories do not have GPG signatures. The official repository
metadata is GPG signed, as are the source packages, but the .deb
packages themselves are not.

If you publish a Debian package and GPG sign the package yourself
before distributing it to users, those users’ systems will, in most
cases, t verify the signature of the package unless they have done a

6https://wiki.debian.org/SecureApt

6

https://wiki.debian.org/SecureApt

considerable amount of configuration. However, their system will, in
most cases, automatically verify repository metadata.

(from HOWTO GPG sign and verify deb packages7 and APT repositories)

Let’s verify this on a fresh Ubuntu 18.04 x64 server instance (on DigitalOcean8):

root@Ubuntu:~# cat /etc/dpkg/dpkg.cfg
dpkg configuration file
#
This file can contain default options for dpkg. All command-line
options are allowed. Values can be specified by putting them after
the option, separated by whitespace and/or an `=' sign.
#

Do not enable debsig-verify by default; since the distribution is not using
embedded signatures, debsig-verify would reject all packages.
no-debsig

Log status changes and actions to a file.
log /var/log/dpkg.log

And on a fresh Debian 9.5 x64 server instance (also on DigitalOcean):

root@Debian:~# cat /etc/dpkg/dpkg.cfg
dpkg configuration file
#
This file can contain default options for dpkg. All command-line
options are allowed. Values can be specified by putting them after
the option, separated by whitespace and/or an `=' sign.
#

Do not enable debsig-verify by default; since the distribution is not using
embedded signatures, debsig-verify would reject all packages.
no-debsig

Log status changes and actions to a file.
log /var/log/dpkg.log

So there is indeed no package signing in Debian, only repository metadata signing
with GPG.

GPG keys

Let’s look at the GPG keys trusted for repository metadata signing.
7https://blog.packagecloud.io/eng/2014/10/28/howto-gpg-sign-verify-deb-packages-apt-

repositories/
8https://www.digitalocean.com/

7

https://blog.packagecloud.io/eng/2014/10/28/howto-gpg-sign-verify-deb-packages-apt-repositories/
https://blog.packagecloud.io/eng/2014/10/28/howto-gpg-sign-verify-deb-packages-apt-repositories/
https://www.digitalocean.com/

On Ubuntu 18.04 x64:

root@Ubuntu:~# apt-key list
/etc/apt/trusted.gpg.d/ubuntu-keyring-2012-archive.gpg
--
pub rsa4096 2012-05-11 [SC]

790B C727 7767 219C 42C8 6F93 3B4F E6AC C0B2 1F32
uid [unknown] Ubuntu Archive Automatic Signing Key (2012) <ftpmaster@ubuntu.com>

/etc/apt/trusted.gpg.d/ubuntu-keyring-2012-cdimage.gpg
--
pub rsa4096 2012-05-11 [SC]

8439 38DF 228D 22F7 B374 2BC0 D94A A3F0 EFE2 1092
uid [unknown] Ubuntu CD Image Automatic Signing Key (2012) <cdimage@ubuntu.com>

On Debian 9.5 x64:

root@Debian:~# apt-key list
/etc/apt/trusted.gpg.d/debian-archive-jessie-automatic.gpg
--
pub rsa4096 2014-11-21 [SC] [expires: 2022-11-19]

126C 0D24 BD8A 2942 CC7D F8AC 7638 D044 2B90 D010
uid [unknown] Debian Archive Automatic Signing Key (8/jessie) <ftpmaster@debian.org>

/etc/apt/trusted.gpg.d/debian-archive-jessie-security-automatic.gpg

pub rsa4096 2014-11-21 [SC] [expires: 2022-11-19]

D211 6914 1CEC D440 F2EB 8DDA 9D6D 8F6B C857 C906
uid [unknown] Debian Security Archive Automatic Signing Key (8/jessie) <ftpmaster@debian.org>

/etc/apt/trusted.gpg.d/debian-archive-jessie-stable.gpg

pub rsa4096 2013-08-17 [SC] [expires: 2021-08-15]

75DD C3C4 A499 F1A1 8CB5 F3C8 CBF8 D6FD 518E 17E1
uid [unknown] Jessie Stable Release Key <debian-release@lists.debian.org>

/etc/apt/trusted.gpg.d/debian-archive-stretch-automatic.gpg

pub rsa4096 2017-05-22 [SC] [expires: 2025-05-20]

E1CF 20DD FFE4 B89E 8026 58F1 E0B1 1894 F66A EC98
uid [unknown] Debian Archive Automatic Signing Key (9/stretch) <ftpmaster@debian.org>
sub rsa4096 2017-05-22 [S] [expires: 2025-05-20]

/etc/apt/trusted.gpg.d/debian-archive-stretch-security-automatic.gpg
--
pub rsa4096 2017-05-22 [SC] [expires: 2025-05-20]

6ED6 F5CB 5FA6 FB2F 460A E88E EDA0 D238 8AE2 2BA9

8

uid [unknown] Debian Security Archive Automatic Signing Key (9/stretch) <ftpmaster@debian.org>
sub rsa4096 2017-05-22 [S] [expires: 2025-05-20]

/etc/apt/trusted.gpg.d/debian-archive-stretch-stable.gpg
--
pub rsa4096 2017-05-20 [SC] [expires: 2025-05-18]

067E 3C45 6BAE 240A CEE8 8F6F EF0F 382A 1A7B 6500
uid [unknown] Debian Stable Release Key (9/stretch) <debian-release@lists.debian.org>

/etc/apt/trusted.gpg.d/debian-archive-wheezy-automatic.gpg
--
pub rsa4096 2012-04-27 [SC] [expires: 2020-04-25]

A1BD 8E9D 78F7 FE5C 3E65 D8AF 8B48 AD62 4692 5553
uid [unknown] Debian Archive Automatic Signing Key (7.0/wheezy) <ftpmaster@debian.org>

/etc/apt/trusted.gpg.d/debian-archive-wheezy-stable.gpg

pub rsa4096 2012-05-08 [SC] [expires: 2019-05-07]

ED6D 6527 1AAC F0FF 15D1 2303 6FB2 A1C2 65FF B764
uid [unknown] Wheezy Stable Release Key <debian-release@lists.debian.org>

These keys are up to 6 years old and their possession is the only thing that is
necessary to get clients to install updates.

Problems with this approach

In my opinion, the approach taken by APT has the following problems:

• Developer signatures do not matter for the end-user, only repository
signatures.

• Repository signatures are created by a single GPG key which is often quite
old and kept on a networked server, which seems to be the default method
of running Debian repositories with Reprepro9. That means:
– There is a single point of failure (just one key).
– If keys are kept on a networked server they are easier to steal.
– The long validity times make stolen keys more disastrous.
– If the signing of packages is automatic then it is likely that there is

little checking of package content happening.
• It doesn’t contain a method for key rotation, in order to rotate keys

packages are usually signed with “overlapping” keys for a while. This
makes it hard to rotate keys in an emergency.

• It seems that packages have to be signed only by one trusted key in order to
be accepted by an apt client. That is, there seems to be no pinned mapping
between repositories and GPG keys. However, due to time constraints I

9https://wiki.debian.org/DebianRepository/SetupWithReprepro

9

https://wiki.debian.org/DebianRepository/SetupWithReprepro

wasn’t able to verify this suspicion, please contact10 me if you have more
detailed information.

Signing software with signify in OpenBSD

OpenBSD11 has one of the best deployed solutions for Securing OpenBSD From
Us To You12.

They implemented a simple minimal tool called signify to create and verify
Ed25519 signatures and employed it to protect their base and package system.
Keys are rotated with every release by putting the public keys for the next
release in the current release.

Their simple setup and short keys makes it easy to verify the authenticity of
keys, but they still suffer from most of the possible attacks described further
below.

Signing software with the Git version control system

Git guarantees data integrity via Git’s data structure (Merkle trees) and it allows
to sign tags and commits with GPG.

Signing tags

The signing and verifying of tags in Git works as follows:

$ git tag -s v1.5 -m 'my signed 1.5 tag'
$ git tag -v v1.5

The problem with signing tags is that they are not unmodifiable.

Signing commits

The signing and verifying of commits in Git works as follows:

$ git commit -a -S -m 'signed commit'
$ git merge --verify-signatures signed-branch

Only merging “fast-forwarding” branches gives some protection against regression
(given one knows the HEAD).

The problem with signing commits is that every commit needs to be signed
and the user has to trust all developer keys, which makes it hard to deploy in
practice. And even then this model has no way of enforcing that at least two or

10mailto:frank@cryptogroup.net
11https://openbsd.org/
12https://www.openbsd.org/papers/bsdcan-signify.html

10

mailto:frank@cryptogroup.net
https://openbsd.org/
https://www.openbsd.org/papers/bsdcan-signify.html

more developer sign each commit, allowing a single developer or compromised
key to introduce backdoors.

Summary of possible attacks

The current solutions to sign software described above do not protect against
the following possible attacks:

• Key compromise.
• Developer coercion (wrench attack), blackmailing, or bribing.
• Regression (suppression of updates).

A developer being forced to give up his signing key or a stolen repository signing
key would be disastrous. Furthermore, GPG has no automatic mechanism for
key rotation which is a likely reason why many GPG signing keys are quite old.

A proposed solution

We propose a design for secure software distribution and secure software develop-
ment which mitigates the aforementioned possible attacks. In our implementation
we get also get verifiable build processes for free, because the client compiles the
source code himself and the source itself if fully secured. With a language that
allows reproducible builds (like Go) this allows a verifiable build process.

The design tackles these to areas by:

1. Establishing code trust via multi-party code reviews recorded in unmod-
ifiable hash chains. This prevents that a single developer can include a
generic backdoor into software.

2. A single source of truth (SSOT) mechanism which makes sure every user of
the software gets the same version of the software. This prevents targeted
backdoors and the suppression of security updates.

Together this builds a secure software delivery and update mechanism which
cannot be compromised by a single developer or for a specific user, thereby
preventing targeted backdoors.

Below we describe the proposed design in more detail.

Code trust via multi-party code reviews recorded in hash chains

The general design looks like follows:

• The “unit” of code are directory trees.

• The hash of a directory tree is a tree hash.

11

• The code history is a sequence of unique tree hashes, starting from the
hash of the empty tree.

• The sequence of tree hashes and signatures over them are recorded in a
hash chain file.

• The signatures contributes towards a m-of-n threshold.

• Code is distributed as a set of patch files which transform a directory tree
with hash a into a directory tree with hash b.

• Patch files are named after the outgoing tree hash a.

Tree hash specification

To calculate the hash of a directory tree (a tree hash) a list of all files in the
directory root (a tree list) is created as follows.

All the files below the root of the directory tree are traversed in lexical order
and printed in this format:

m xxx filename

Where:

m is the mode ('f' or 'x')
xxx is the SHA256 hash for the file in hex notation
filename is the file name with directory prefix starting at root

Example list:

f 7d865e959b2466918c9863afca942d0fb89d7c9ac0c99bafc3749504ded97730 bar/baz.txt
x b5bb9d8014a0f9b1d61e21e796d78dccdf1352f23cd32812f4850b878ae4944c foo.txt

The fields are separated with single white space characters and the lines are
separated with single newline characters.

Directories are only implicitly listed (i.e., if they contain files). Entries start
with ‘f’ if it is a regular file (read and write permission for user) and with ‘x’ if
it is an executable (read, write, and executable for user).

The directory tree must only contain directories, regular files, or executables.

The deterministic tree list serves as the basis for a hash of a directory tree (the
tree hash), which is the SHA256 hash of the tree list in hex notation.

Hash chain file format

A hash chain is a chain of signatures over a chain of code changes.

A hash chain is stored in a simple newline separated text file where each hash
chain entry corresponds to a single line and has the following form:

12

hash-of-previous current-time type type-fields ...

Where hash-of-previous is the SHA256 hash of the previous line (without the
trailing newline) in hex encoding. The fields are separated by single white spaces.
The current-time is encoded as an ISO 8601 string in UTC.

All hashes in a hash chain are SHA256 hashes encoded in hex notation. Hex
encodings have to be lowercase. All public keys are Ed25519 keys and they
and their signatures are encoded in base64 (URL encoding without padding).
Comments are arbitrary UTF-8 sequences, but cannot contain newlines.

There are six different types of hash chain entries:

cstart
source
signtr
addkey
remkey
sigctl

A hash chain must start with a cstart entry and that is the only line where this
type must appear.

Type cstart

A cstart entry starts a new hash chain.

hash-of-previous current-time cstart pubkey nonce signature [comment]

The hash-of-previous for the cstart time is the hash of an empty source tree. The
signature by pubkey is over the pubkey, the nonce, and the optional comment.
The comment should identify the owner of the pubkey, not the project. The
nonce must be a 24 byte random number in base64 (URL encoding without
padding). This makes pubkey the only valid signer for the hash chain and
implicitly sets the signature threshold m to 1.

Type source

A source entry marks a new source tree state for publication from the developer
owning the signing pubkey. The optional comment can be used to describe the
change to the reviewers.

hash-of-previous current-time source tree-hash pubkey signature [comment]

The signature by pubkey is over the source tree hash and the optional comment.
See the tree package for a detailed description of source tree hashes.

13

Type signtr

A signtr entry signs a previous hash chain entry and thereby approves all code
changes and changes to the set of signature keys and m up to that point.

hash-of-previous current-time signtr hash-of-chain-entry pubkey signature

It does not necessarily sign the previous line and can therefore be done in a
detached fashion by a reviewer and added later by the developer responsible for
maintaining the hash chain. This avoids merge conflicts.

Type addkey

An addkey entry marks a signature pubkey for addition to the list of approved
signature keys.

hash-of-previous current-time addkey w pubkey signature [comment]

The weight of the key towards the minimum number of necessary signatures m
is denoted by w. The pubkey can be accompanied by an optional comment, but
the signature must be over both. The comment is added last so it can contain
white spaces without complicating the parsing, it should identify the owner of
the pubkey.

Type remkey

A remkey entry marks a signature pubkey for removal from the list of approved
signature keys.

hash-of-previous current-time remkey pubkey

Type sigctl

A sigctl entry denotes an update of m, the minimum number of necessary
signatures to approve state changes (the threshold).

hash-of-previous current-time sigctl m

Patchfile format

A patchfile is a UTF-8 encoded file split into newline separated lines. It starts
with the following line which defines the patchfile version:

codechain patchfile version 1

The second line gives the tree hash of the directory tree the patchfile applies to
(example):

treehash 5998c63aca42e471297c0fa353538a93d4d4cfafe9a672df6989e694188b4a92

14

The main body of the patch file encodes file deletions, file additions, and file
diffs. A file deletion is encoded as follows (example):

- f 927d2cae58bb53cdd087bb7178afeff9dab8ec1691cbd01aeccae62559da2791 gopher.png

The ‘-’ denotes a deletion. The other three entries are the same as file entries of
tree lists.

A file addition is encoded as follows (example):

+ f ad125cc5c1fb680be130908a0838ca2235db04285bcdd29e8e25087927e7dd0d hello.go

The ‘+’ denotes an addition. The other three entries are the same as file entries
of tree lists.

After an addition the actual patch must follow, either in “dmppatch” (for UTF-8
files) or in “ascii85” format (for binary files). The “dmppatch” file format looks
like the following (example):

dmppatch 2
@@ -0,0 +1,78 @@
+package main%0A%0Aimport (%0A%09%22fmt%22%0A)%0A%0Afunc main() %7B%0A%09fmt.Println(%22hello world!%22)%0A%7D%0A

The number after “dmppatch” denotes the number of lines following containing
the actual UTF-8 patch.

The “ascii85” file format looks like the following (example):

ascii85 2
+,^C)8Mp-E!!DW60b/e#'ElcGar]O1ZH.;>ZnWJO:iLd/`5G7uXPR`iQmq0B\]npD=)8AK4gPQFI-+W_
>oidmeIj`.fgNufo<4MB5*&XfkqnCOo9\::*WQ0?z!!*#^!R=9-%KImW!!

The number after “ascii85” denotes the number of lines following containing
the actual binary encoding. “ascii85” patches are not real patches, but always
encode the entire binary file.

A file diff is encoded as follows (example):

- f ad125cc5c1fb680be130908a0838ca2235db04285bcdd29e8e25087927e7dd0d hello.go
+ f 1b239e494fa201667627de82f0e4dc27b7b00b6ec06146e4d062730bf3762141 hello.go

As with file additions, after a file diff the actual patch must follow, either in
“dmppatch” or “ascii85” format (see above), if the file hash changed. That is,
if just the file mode changed and the file hash stayed the same no patch must
follow.

File diffs are only used if the file names (“hello.go” in the example above) are
the same. File moves are implemented as a file deletion and a file addition.

The last line in a patchfile must be the tree hash of the directory tree after the
patchfile has been applied (example):

treehash e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

15

Patchfiles are optimized for robustness, not for compactness or human readability
(although the human readability is reasonable). A complete example containing
a single UTF-8 file addition:

codechain patchfile version 1
treehash e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
+ f ad125cc5c1fb680be130908a0838ca2235db04285bcdd29e8e25087927e7dd0d hello.go
dmppatch 2
@@ -0,0 +1,78 @@
+package main%0A%0Aimport (%0A%09%22fmt%22%0A)%0A%0Afunc main() %7B%0A%09fmt.Println(%22hello world!%22)%0A%7D%0A
treehash 5998c63aca42e471297c0fa353538a93d4d4cfafe9a672df6989e694188b4a92

Diff function specification

Given the patchfile format described above, a Diff function that computes a patch
file for two directory trees rooted at A and B is straightforward to implement:

1. Calculate tree lists LIST_A and LIST_B (in lexical order) for A and B.

2. Compare the file names NAME_A and NAME_B (lexicographically) of
the first two entries in LIST_A and LIST_B:

• If NAME_A < NAME_B: File delete NAME_A, remove it from
LIST_A, goto 2.

• If NAME_A > NAME_B: File add NAME_B, remove it from
LIST_B, goto 2.

• If NAME_A == NAME_B:
• If file mode or file hash of files NAME_A and NAME_B differ: file

diff.
• Remove NAME_A from LIST_A, NAME_B from LIST_B, and goto

2.

3. If LIST_A still contains entries while LIST_B is empty, add file deletions
for all entries in LIST_A.

4. If LIST_B still contains entries while LIST_A is empty, add file additions
for all entries in LIST_B.

Apply function specification

To apply a patchfile PATCH to a directory DIR we use the following algorithm:

1. Read first line of of PATCH and make sure it contains a codechain patchfile
version we understand.

2. Read the second line of PATCH, make sure it is a treehash, and compare
it with the treehash of DIR (before any patches have been applied).

3. Read next line of PATCH:

16

• If it starts with ‘+’: Add file encoded in the following patch.
• If it starts with ‘-’:
• If the next line starts with ‘+’:

– If the file name differ: Delete first file, add second file (with the
following patch, which must be either ascii85 or dmppatch).

– Otherwise (file names are the same):
– If hashes are the same (only file modes differ): Adjust mode.
– Otherwise (hashes differ): Apply the following patch, which must

be either ascii85 or dmppatch (and adjust mode, if necessary).
• Otherwise: Delete file.
• If it starts with ‘treehash’: Goto 4.
• Goto 3.

4. Read the last line of PATCH, make sure it is a treehash, and compare it
with the treehash of DIR (after all patches have been applied).

Distributing the current head

The current head of a hash chain is all one need to fully verify the entire code
history and recreate the most current code version with enough signatures, given
that one has access to the hash chain and the corresponding patch files.

But in order to prevent the suppression of updates to certain users, a form of
targeted updates, one has to ensure that all users have access to the most current
head.

The method to do that is employing a so-called single source of truth (SSOT)
where every user has access to the same authentic version of a data object. See
also SSOT on Wikipedia13.

Single source of truth (SSOT) via DNS

One widely deployed SSOT system which can be used for that is the Domain
Name System (DNS) which associates various information with domain names
assigned to each of the participating entities (see DNS on Wikipedia14).

In our design we store the necessary information, a signed head, in the TXT
record15 of a fully qualified domain name (FQDN16) starting with the prefix
_codechain.

The head is signed, which allows clients to verify updates to it, after they have
seen it for the first time and learning the corresponding public key (trust on first
use).

13https://en.wikipedia.org/wiki/Single_source_of_truth
14https://en.wikipedia.org/wiki/Domain_Name_System
15https://en.wikipedia.org/wiki/TXT_record
16https://en.wikipedia.org/wiki/Fully_qualified_domain_name

17

https://en.wikipedia.org/wiki/Single_source_of_truth
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/TXT_record
https://en.wikipedia.org/wiki/Fully_qualified_domain_name

Due to the distributed caching design of DNS it is not possible for publishers to
send different signed heads to different users, which prevents targeted updates by
publishers.

Distributing false signed heads through DNS spoofing17 is prevented if and
only if the client has seen a signed head before (clients cache public keys)

If a client has not seen a valid head before it is vulnerable to DNS spoofing.
However, this can be mitigated by deploying the SSOT on a domain which is
secured by the Domain Name System Security Extensions (DNSSEC18).

In order to publish packages using a single source of truth (SSOT) with DNS
TXT records we first define how the signed heads are represented as TXT records
and then define two noperations: “CreatePkg” to initially publish a package and
“SignHead” to publish updates.

Signed head specification

Signed heads have the following fields:

• PUBKEY (32-byte), the Ed25519 public key of SSOT head signer.
• PUBKEY_ROTATE (32-byte), Ed25519 pubkey to rotate to, set to 0 if unused.
• VALID_FROM (8-byte), the signed head is valid from the given Unix time.
• VALID_TO (8-byte), the signed head is valid to the given Unix time.
• COUNTER (8-byte), strictly increasing signature counter.
• HEAD, the Codechain head to sign.
• SIGNATURE, signature with PUBKEY.

The SIGNATURE is over all previous fields:

PUBKEY|PUBKEY_ROTATE|VALID_FROM|VALID_TO|COUNTER|HEAD

The signed head is a concatenation of

PUBKEY|PUBKEY_ROTATE|VALID_FROM|VALID_TO|COUNTER|HEAD|SIGNATURE

encoded in base64 (URL encoding without padding.

All integers (VALID_FROM, VALID_TO, COUNTER) are encoded in network order
(big-endian).

CreatePkg specification

To create a new secure package for a project developed with Codechain that
should be distributed with a SSOT using DNS TXT records, the following
procedure is defined:

1. Make sure the project with NAME has not been published before. That is,
the directory ~/.config/ssotpub/pkgs/NAME does not exist.

17https://en.wikipedia.org/wiki/DNS_spoofing
18https://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions

18

https://en.wikipedia.org/wiki/DNS_spoofing
https://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions

2. Create a new .secpkg file which specifies the following:

• The NAME of the project.
• The fully qualified domain name (DNS) where the TXT records can

be queried.
• The URL under which the distribution .tar.gz files can be downloaded.
• The current HEAD of the project’s Codechain.

The .secpkg file is saved to the current working directory, which is typically
added to the root of the project’s repository.

3. Create the first signed head for the current project’s HEAD with a supplied
secret key and counter set to 0.

4. Create the directory ~/.config/ssotpub/pkgs/NAME/dists and save the
current distribution to ~/.config/ssotpub/pkgs/NAME/dists/HEAD.tar.gz
(codechain createdist).

5. Save the signed head to ~/.config/ssotpub/pkgs/NAME/signed_head

6. Print the distribution name:
~/.config/secpkg/pkgs/NAME/dists/HEAD.tar.gz

7. Print DNS TXT record as defined by the .secpkg and the first signed head.

Afterwards the administrator manually uploads the distribution HEAD.tar.gz to
the download URL and publishes the new DNS TXT record in the defined zone.
DNSSEC should be enabled.

SignHead specification

To publish an update of a secure package with SSOT do the following:

1. Parse the .secpkg file in the current working directory.

2. Make sure the project with NAME has been published before. That is, the
directory ~/.config/ssotpub/pkgs/NAME exists.

3. Validate the signed head in ~/.config/ssotpub/pkgs/NAME/signed_head
and make sure the corresponding secret key is available.

4. Get the HEAD from .codechain/hashchain in the current working direc-
tory.

5. Create a new signed head with current HEAD, the counter of the previous
signed head plus 1, and update the saved signed head:

• Copy ~/.config/ssotpub/pkgs/NAME/signed_head to
~/.config/ssotpub/pkgs/NAME/previous_signed_head

• Save new signed head to
~/.config/ssotpub/pkgs/NAME/signed_head (atomic).

19

6. Save the current distribution to:
~/.config/secpkg/pkgs/NAME/dists/HEAD.tar.gz
(codechain createdist).

7. Print the distribution name:
~/.config/ssotpkg/pkgs/NAME/dists/HEAD.tar.gz

8. Print DNS TXT record as defined by the .secpkg and the signed head.

9. If the HEAD changed, update the .secpkg file accordingly.

Afterwards the administrator manually uploads the distribution HEAD.tar.gz to
the download URL and publishes the new DNS TXT record in the defined zone.
DNSSEC should be enabled.

Secure package (.secpkg) specification

A secure package (.secpkg file) contains a JSON object with the following keys:

{
"Name": "the project's package name",
"Head": "head of project's Codechain",
"DNS": "fully qualified domain name",
"URL": "URL to download project files of the from (URL/head.tar.gz)"

}

Example .secpkg file for Codechain itself:

{
"Name": "codechain",
"Head": "73fe1313fd924854f149021e969546bce6052eca0c22b2b91245cb448410493c",
"DNS": "codechain.secpkg.net",
"URL": "http://frankbraun.org/codechain"

}

Install specification

Installing software described by a .secpkg file works as follows:

1. Parse .secpkg file and validate it. Save head as HEAD_PKG.

2. Make sure the project with NAME has not been installed before. That is,
the directory ~/.config/secpkg/pkgs/NAME does not exist.

3. Create directory ~/.config/secpkg/pkgs/NAME

4. Save .secpkg file to ~/.config/secpkg/pkgs/NAME/.secpkg

5. Query TXT record from _codechain.DNS and validate the signed head
contained in it. Save head from TXT record (HEAD_SSOT).

20

6. Store the signed head to ~/.config/secpkg/pkgs/NAME/signed_head

7. Download distribution file from URL/HEAD_SSOT.tar.gz and save it to
~/.config/secpkg/pkgs/NAME/dists

8. Apply ~/.config/secpkg/pkgs/NAME/dists/HEAD_SSOT.tar.gz to
~/.config/secpkg/pkgs/NAME/src with
codechain apply -f ~/.config/secpkg/pkgs/NAME/dists/HEAD_SSOT.tar.gz
-head HEAD_SSOT

9. Make sure HEAD_PKG is contained in
~/.config/secpkg/pkgs/NAME/src/.codchain/hashchain

10. Copy ~/.config/secpkg/pkgs/NAME/src to
~/.config/secpkg/pkgs/NAME/build

11. Call make prefix=~/.config/secpkg/local in
~/.config/secpkg/pkgs/NAME/build

12. Call make prefix= ~/.config/secpkg/local install in
~/.config/secpkg/pkgs/NAME/build

13. Move ~/.config/secpkg/pkgs/NAME/build to
~/.config/secpkg/pkgs/NAME/installed

If the installation process fails at any stage during the procedure described above,
report the error and remove the directory ~/.config/secpkg/pkgs/NAME.

For the process above to work, the projects distributed as secure packages must
contain a Makefile (for GNU Make) with the “all” target building the software
and the “install” target installing it.

The software must be self-contained without any external dependencies, except
for the compiler. For Go software that means at least Go 1.11 must be installed
(with module support) and all dependencies must be vendored.

Update specification

Updating a software package with NAME works as follows:

1. Make sure the project with NAME has been installed before. That is, the
directory ~/.config/secpkg/pkgs/NAME exists.

2. Load .secpkg file from ~/.config/secpkg/pkgs/NAME/.secpkg

3. Load signed head from ~/.config/secpkg/pkgs/NAME/signed_head (as
DISK)

4. Query TXT record from _codechain.DNS, if it is the same as DISK, goto
15.

5. Validate signed head from TXT and store HEAD:

21

• pubKey from TXT must be the same as pubKey or pubKeyRotate
from DISK.

• The counter from TXT must be larger than the counter from DISK.
• The signed head must be valid (as defined by validFrom and validTo).

If the validation fails, abort update procedure and report error.

6. If signed head from TXT record is the same as the one from DISK:

• Copy ~/.config/secpkg/pkgs/NAME/signed_head to
~/.config/secpkg/pkgs/NAME/previous_signed_head

• Save new signed head to ~/.config/secpkg/pkgs/NAME/signed_head
(atomic).

• Goto 15.

7. Download distribution file from URL/HEAD.tar.gz and save it to
~/.config/secpkg/pkgs/NAME/dists

8. Apply ~/.config/secpkg/pkgs/NAME/dists/HEAD.tar.gz to
~/.config/secpkg/pkgs/NAME/src with
codechain apply -f ~/.config/secpkg/pkgs/NAME/dists/HEAD.tar.gz
-head HEAD.

9. rm -rf ~/.config/secpkg/pkgs/NAME/build

10. cp -r ~/.config/secpkg/pkgs/NAME/src ~/.config/secpkg/pkgs/NAME/build

11. Call make prefix=~/.config/secpkg/local in
~/.config/secpkg/pkgs/NAME/build

12. Call make prefix= ~/.config/secpkg/local install in
~/.config/secpkg/pkgs/NAME/build

13. mv ~/.config/secpkg/pkgs/NAME/build ~/.config/secpkg/pkgs/NAME/installed

14. Update signed head:

• Copy ~/.config/secpkg/pkgs/NAME/signed_head to
~/.config/secpkg/pkgs/NAME/previous_signed_head

• Save new signed head to ~/.config/secpkg/pkgs/NAME/signed_head
(atomic).

15. The software has been successfully updated.

Implementation in Codechain

The specifications given above are implemented in Codechain19 (in Go).
Codechain contains three tools for different user roles:

19https://github.com/frankbraun/codechain

22

https://github.com/frankbraun/codechain

1. codechain for developers to record code changes and corresponding multi-
party reviews in a unmodifiable hash chain.

2. ssotpub for admins to publish the head of a hash chain created by
codechain with a SSOT using DNS TXT records, creating a .secpkg
file in the process.

3. secpkg for users to securely install and update software distributed as
.secpkg files.

Codechain goals

• Signed multiparty code reviews.
• Easy & built-in key rotation.
• Protection against $5 wrench attack.
• Regression protection, unmodifiable history.
• Minimal usable implementation written in Go as soon as possible.
• Focus on source distribution, not binary.
• Single source of truth (SSOT).

Out-of-scope:

• Source code management (just use Git).
• Code distribution (minimal support is provided via codechain

createdist and codechain apply -f, both are used by secpkg).

Tree hash implementation

In Codechain tree hashes and tree lists are implemented in the tree package20

and available through the codechain treehash command.

Example use:

$ cd $GOPATH/src/github.com/frankbraun/codechain/doc/helloproject

$ codechain treehash -l
f ab81f3080f71a034c90dc0ca64b62295d3a75a23ec1b0f498dfda4a34325ae3a README.md
f ad125cc5c1fb680be130908a0838ca2235db04285bcdd29e8e25087927e7dd0d hello.go

$ codechain treehash
d844cbe6f6c2c29e97742b272096407e4d92e6ac7f167216b321c7aa55629716

$ codechain treehash -l | sha256sum
d844cbe6f6c2c29e97742b272096407e4d92e6ac7f167216b321c7aa55629716

20https://godoc.org/github.com/frankbraun/codechain/tree

23

https://godoc.org/github.com/frankbraun/codechain/tree

Hash chain implementation

The hash chain file format is implemented in the hashchain package21, look there
for an example hash chain.

Patchfile implementation

The patchfile format is implemented in the patchfile package22.

SSOT via DNS implementation

SSOT with DNS TXT records is implemented in the SSOT package23.

Secure package implementation

Secure packages are implemented in the secpkg package24.

Conclusion

The design for secure software development and distribution with secure multi-
party code reviews and a SSOT described in this document and implemented in
Codechain gives us

• globally identical,
• verifiable,
• reproducible, and
• attributable

binaries build from source, which is a technical mitigation against one of the most
likely results of further crypto regulation attempts, so-called targeted updates.

We built a minimal solution in order to be able to use it for our own software, but I
hope that others will build upon it and improve the design and/or implementation
to close what I believe is a gaping security hole in the area of software updates.

Future work: platform vendors

While many open-source software distributions came a long way towards verifiable
build processes (see Reproducible Builds25), they often lack in the area of secure
software distribution and secure software development. The most common signing
mechanism used by open-source software projects and distributions nowadays—a

21https://godoc.org/github.com/frankbraun/codechain/hashchain
22https://godoc.org/github.com/frankbraun/codechain/patchfile
23https://godoc.org/github.com/frankbraun/codechain/ssot
24https://godoc.org/github.com/frankbraun/codechain/secpkg
25https://reproducible-builds.org/

24

https://godoc.org/github.com/frankbraun/codechain/hashchain
https://godoc.org/github.com/frankbraun/codechain/patchfile
https://godoc.org/github.com/frankbraun/codechain/ssot
https://godoc.org/github.com/frankbraun/codechain/secpkg
https://reproducible-builds.org/

single GPG signature—is not sufficient for secure software development. And
we are not aware of any secure software distribution mechanism employed by
distributions today that guarantees that the installed software is the same as on
all devices.

We believe a design like the one described in this document and implementa-
tions like Codechain26 could be used to improve that situation for open-source
distributions, make targeted backdoors impossible there, and by advancing
the state-of-the-art put pressure on commercial vendors to implement similar
mechanisms.

In my opinion, the following open-source operating systems are the best candi-
dates: Arch Linux27, Gentoo Linux28, and OpenBSD29.

For commercial OS vendors especially Apple, with their newfound focus on
privacy and security that is aligned with their core business, seems to be a viable
candidate.

Acknowledgments

Codechain and this paper have been heavily influenced by discussions with
Jonathan Logan30 of Cryptohippie31, Inc.

Do you like my work and want to give back? Donate bitcoin:

3FguRzVXe24cicayb2tmVnHVu4Sp1rULNC32

26https://github.com/frankbraun/codechain
27https://archlinux.org/
28https://gentoo.org/
29https://openbsd.org/
30https://github.com/JonathanLogan
31https://secure.cryptohippie.com/
32bitcoin://3FguRzVXe24cicayb2tmVnHVu4Sp1rULNC

25

https://github.com/frankbraun/codechain
https://archlinux.org/
https://gentoo.org/
https://openbsd.org/
https://github.com/JonathanLogan
https://secure.cryptohippie.com/
bitcoin://3FguRzVXe24cicayb2tmVnHVu4Sp1rULNC

	Reflections on trusting trust
	The problem of targeted backdoors
	Recent developments regarding targeted backdoors
	Current mitigation attempts
	Signing software with secure APT (Debian) packages
	Signing software with signify in OpenBSD
	Signing software with the Git version control system
	Summary of possible attacks

	A proposed solution
	Code trust via multi-party code reviews recorded in hash chains
	Tree hash specification
	Hash chain file format
	Patchfile format
	Distributing the current head
	Single source of truth (SSOT) via DNS
	Secure package (.secpkg) specification

	Implementation in Codechain
	Codechain goals

	Conclusion
	Acknowledgments

