
Concurrency in Go and Erlang

Frank Braun

2020-08-07

A comparison between the concurrency mechanisms in Go and Erlang.

Lightweight processes

Both Go and Erlang have concurrency mechanisms inspired by communicating
sequential processes1. They both have very lightweight concurrent processes
which are not necessarily running in parallel. That is, they can run concurrently
on a single core without the need to manually yield to another process. The
scheduler of the language runtime does take care of that. If more than one core
is available, processes in both languages run in parallel.

Starting a lightweight process in Go (called goroutine) for a function f:

go f()

In Erlang spawn2 is called with the function to execute as the new process and
it’s argument:

Pid = spawn(Module, Function, Args)

It returns a process identifier.

So processes are actually quite similar in Go and Erlang, just the syntax is
different.

Message Passing

Message passing between processes is different in Go and Erlang. In Go there
is the explicit concept of channels (a type) that can be used to communicate
between concurrently executing functions. Channels can be unbuffered or buffered.
Sending to an unbuffered channel or a full buffered channel blocks the sender.
Receiving from an unbuffered channel without a sender or from an empty buffered
one blocks as well. Reading from channels works in a strict first in, first out

1https://en.wikipedia.org/wiki/Communicating_sequential_processes
2https://erlang.org/doc/man/erlang.html#spawn-3

1

https://en.wikipedia.org/wiki/Communicating_sequential_processes
https://erlang.org/doc/man/erlang.html#spawn-3


manner. Since channels in Go are “first-class citizens” they can be assigned to
variables, passed around in channels, etc.

In Erlang every process has an implicit message queue which can be send to by
using corresponding the process identifier:

Pid ! Msg

Sending to a message queue never blocks the sender. Message queues are buffered
with an “unlimited buffer” (until the memory limit is reached).

Reading from the buffer works by pattern matching of different clauses against
the messages. If an earlier message doesn’t match any clause it will be left in the
queue and a later (matching) message is processed instead. That is, messages
are not processed strictly in a first in, first out manner.

Message queues are not “first-class citizens” in Erlang.

Error handling

Go and Erlang differ massively in error handling.

In Go errors are supposed to be handled explicitly, exceptions (created by calling
panic()) should be avoided. Exceptions can be handled3 by recover(), but
this should be avoided as a general error handling mechanism. That is, in general
errors between different processes are explicitly passed around through channels.

Erlang, on the other hand, has a “crash early, crash often” philosophy. Corner
cases (for example in pattern matching) are not explicitly handled, leading to a
crash of the corresponding process. Processes are organized in hierarchies (for
example, by using the generic supervisor4 behavior) where supervising processes
react to messages generated by crashing child processes.

Distribution

Go has no explicit support to distribute processes over multiple nodes. Although
it has necessary networking capabilities in it’s standard library, the process and
channel primitives do not work across nodes.

Erlang has the capabilities to distribute5 a software system over multiple nodes.
That is, processes can be started on remote nodes and can be communicated
with as with processes on local nodes. However, the distribution over multiple
nodes is not something that happens automatically, it has to be built into the
software explicitly. Furthermore, Erlang assumes a friendly network: Node
communication is authenticated (by a shared secret), but not encrypted. So for

3https://golang.org/ref/spec#Handling_panics
4https://erlang.org/doc/man/supervisor.html
5https://erlang.org/doc/reference_manual/distributed.html

2

https://golang.org/ref/spec#Handling_panics
https://erlang.org/doc/man/supervisor.html
https://erlang.org/doc/reference_manual/distributed.html


a node cluster on the Internet the network layer encryption would either have to
be added in Erlang itself or the nodes have to be connected in such a way that
the network layer is encrypted already.

3


	Lightweight processes
	Message Passing
	Error handling
	Distribution

